Skip to contents

Interact with local AI models via the Ollama API

Usage

ollama_chat(
  .llm,
  .model = "gemma2",
  .stream = FALSE,
  .seed = NULL,
  .json_schema = NULL,
  .temperature = NULL,
  .num_ctx = 2048,
  .num_predict = NULL,
  .top_k = NULL,
  .top_p = NULL,
  .min_p = NULL,
  .mirostat = NULL,
  .mirostat_eta = NULL,
  .mirostat_tau = NULL,
  .repeat_last_n = NULL,
  .repeat_penalty = NULL,
  .tfs_z = NULL,
  .stop = NULL,
  .ollama_server = "http://localhost:11434",
  .timeout = 120,
  .keep_alive = NULL,
  .dry_run = FALSE
)

Arguments

.llm

An LLMMessage object containing the conversation history and system prompt.

.model

Character string specifying the Ollama model to use (default: "gemma2")

.stream

Logical; whether to stream the response (default: FALSE)

.seed

Integer; seed for reproducible generation (default: NULL)

.json_schema

A JSON schema object as R list to enforce the output structure (default: NULL)

.temperature

Float between 0-2; controls randomness in responses (default: NULL)

.num_ctx

Integer; sets the context window size (default: 2048)

.num_predict

Integer; maximum number of tokens to predict (default: NULL)

.top_k

Integer; controls diversity by limiting top tokens considered (default: NULL)

.top_p

Float between 0-1; nucleus sampling threshold (default: NULL)

.min_p

Float between 0-1; minimum probability threshold (default: NULL)

.mirostat

Integer (0,1,2); enables Mirostat sampling algorithm (default: NULL)

.mirostat_eta

Float; Mirostat learning rate (default: NULL)

.mirostat_tau

Float; Mirostat target entropy (default: NULL)

.repeat_last_n

Integer; tokens to look back for repetition (default: NULL)

.repeat_penalty

Float; penalty for repeated tokens (default: NULL)

.tfs_z

Float; tail free sampling parameter (default: NULL)

.stop

Character; custom stop sequence(s) (default: NULL)

.ollama_server

String; Ollama API endpoint (default: "http://localhost:11434")

.timeout

Integer; API request timeout in seconds (default: 120)

.keep_alive

Character; How long should the ollama model be kept in memory after request (default: NULL - 5 Minutes)

.dry_run

Logical; if TRUE, returns request object without execution (default: FALSE)

Value

A new LLMMessage object containing the original messages plus the model's response

Details

The function provides extensive control over the generation process through various parameters:

  • Temperature (0-2): Higher values increase creativity, lower values make responses more focused

  • Top-k/Top-p: Control diversity of generated text

  • Mirostat: Advanced sampling algorithm for maintaining consistent complexity

  • Repeat penalties: Prevent repetitive text

  • Context window: Control how much previous conversation is considered

Examples

if (FALSE) { # \dontrun{
llm_message("user", "Hello, how are you?")
response <- ollama_chat(llm, .model = "gemma2", .temperature = 0.7)

# With custom parameters
response <- ollama_chat(
  llm,
  .model = "llama2",
  .temperature = 0.8,
  .top_p = 0.9,
  .num_ctx = 4096
)
} # }