Send LLMMessage to Mistral API
Usage
mistral_chat(
.llm,
.model = "mistral-large-latest",
.stream = FALSE,
.seed = NULL,
.json = FALSE,
.temperature = 0.7,
.top_p = 1,
.stop = NULL,
.safe_prompt = FALSE,
.timeout = 120,
.max_tries = 3,
.max_tokens = 1024,
.min_tokens = NULL,
.dry_run = FALSE,
.verbose = FALSE
)
Arguments
- .llm
An
LLMMessage
object.- .model
The model identifier to use (default:
"mistral-large-latest"
).- .stream
Whether to stream back partial progress to the console. (default:
FALSE
).- .seed
The seed to use for random sampling. If set, different calls will generate deterministic results (optional).
- .json
Whether the output should be in JSON mode(default:
FALSE
).- .temperature
Sampling temperature to use, between
0.0
and1.5
. Higher values make the output more random, while lower values make it more focused and deterministic (default:0.7
).- .top_p
Nucleus sampling parameter, between
0.0
and1.0
. The model considers tokens with top_p probability mass (default:1
).- .stop
Stop generation if this token is detected, or if one of these tokens is detected when providing a list (optional).
- .safe_prompt
Whether to inject a safety prompt before all conversations (default:
FALSE
).- .timeout
When should our connection time out in seconds (default:
120
).- .max_tries
Maximum retries to peform request
- .max_tokens
The maximum number of tokens to generate in the completion. Must be
>= 0
(default:1024
).- .min_tokens
The minimum number of tokens to generate in the completion. Must be
>= 0
(optional).- .dry_run
If
TRUE
, perform a dry run and return the request object (default:FALSE
).- .verbose
Should additional information be shown after the API call? (default:
FALSE
)