Generate Embeddings Using the Google Gemini API
Usage
gemini_embedding(
.input,
.model = "text-embedding-004",
.truncate = TRUE,
.timeout = 120,
.dry_run = FALSE,
.max_tries = 3
)
Arguments
- .input
A character vector of texts to embed or an
LLMMessage
object- .model
The embedding model identifier (default: "text-embedding-3-small").
- .truncate
Whether to truncate inputs to fit the model's context length (default: TRUE).
- .timeout
Timeout for the API request in seconds (default: 120).
- .dry_run
If TRUE, perform a dry run and return the request object.
- .max_tries
Maximum retry attempts for requests (default: 3).